Code for radon analysis

srrs2 <- read.table ("srrs2.dat", header=T, sep=",")
mn <- srrs2$state=="MN"
radon <- srrs2$activity[mn]
log.radon <- log (ifelse (radon==0, .1, radon))
floor <- srrs2$floor[mn]   # 0 for basement, 1 for first floor
n <- length(radon)
y <- log.radon
x <- floor

county.name <- as.vector(srrs2$county[mn])
uniq <- unique(county.name)
J <- length(uniq)
county <- rep (NA, J)
for (i in 1:J){
  county[county.name==uniq[i]] <- i
}
###pooled model
lm.pooled<-lm(formula=y~x)
summary(lm.pooled)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6293 -0.5383  0.0342  0.5603  2.5486 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.32674    0.02972  44.640   <2e-16 ***
## x           -0.61339    0.07284  -8.421   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8226 on 917 degrees of freedom
## Multiple R-squared:  0.07178,    Adjusted R-squared:  0.07077 
## F-statistic: 70.91 on 1 and 917 DF,  p-value: < 2.2e-16
###unpooled  model
lm.unpooled<-lm(formula=y~x+factor(county)-1)
summary(lm.unpooled)
## 
## Call:
## lm(formula = y ~ x + factor(county) - 1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.14595 -0.45405  0.00065  0.45376  2.65987 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## x                -0.72054    0.07352  -9.800  < 2e-16 ***
## factor(county)1   0.84054    0.37866   2.220 0.026701 *  
## factor(county)2   0.87482    0.10498   8.333 3.23e-16 ***
## factor(county)3   1.52870    0.43946   3.479 0.000530 ***
## factor(county)4   1.55272    0.28897   5.373 1.00e-07 ***
## factor(county)5   1.43257    0.37866   3.783 0.000166 ***
## factor(county)6   1.51301    0.43672   3.464 0.000558 ***
## factor(county)7   2.01216    0.20243   9.940  < 2e-16 ***
## factor(county)8   1.98958    0.37999   5.236 2.08e-07 ***
## factor(county)9   1.00304    0.23931   4.191 3.07e-05 ***
## factor(county)10  1.56391    0.31099   5.029 6.04e-07 ***
## factor(county)11  1.40113    0.33828   4.142 3.80e-05 ***
## factor(county)12  1.73025    0.37821   4.575 5.49e-06 ***
## factor(county)13  1.03872    0.30881   3.364 0.000804 ***
## factor(county)14  1.98838    0.20325   9.783  < 2e-16 ***
## factor(county)15  1.33797    0.37999   3.521 0.000453 ***
## factor(county)16  0.66486    0.53487   1.243 0.214204    
## factor(county)17  1.27480    0.38221   3.335 0.000890 ***
## factor(county)18  1.12155    0.21913   5.118 3.83e-07 ***
## factor(county)19  1.33831    0.09541  14.026  < 2e-16 ***
## factor(county)20  1.80032    0.43672   4.122 4.13e-05 ***
## factor(county)21  1.73399    0.25227   6.873 1.23e-11 ***
## factor(county)22  0.63679    0.30905   2.060 0.039663 *  
## factor(county)23  1.39999    0.53613   2.611 0.009183 ** 
## factor(county)24  2.10162    0.25267   8.318 3.64e-16 ***
## factor(county)25  1.95072    0.20243   9.636  < 2e-16 ***
## factor(county)26  1.36058    0.07422  18.332  < 2e-16 ***
## factor(county)27  1.77336    0.30978   5.725 1.45e-08 ***
## factor(county)28  1.24159    0.34115   3.639 0.000290 ***
## factor(county)29  1.05600    0.43672   2.418 0.015818 *  
## factor(county)30  0.92576    0.22807   4.059 5.39e-05 ***
## factor(county)31  2.02057    0.33828   5.973 3.45e-09 ***
## factor(county)32  1.23629    0.37821   3.269 0.001124 ** 
## factor(county)33  2.06187    0.37821   5.452 6.58e-08 ***
## factor(county)34  1.59044    0.43946   3.619 0.000314 ***
## factor(county)35  0.81920    0.28897   2.835 0.004695 ** 
## factor(county)36  2.95897    0.53613   5.519 4.55e-08 ***
## factor(county)37  0.40209    0.25227   1.594 0.111345    
## factor(county)38  1.86772    0.37999   4.915 1.07e-06 ***
## factor(county)39  1.74807    0.33860   5.163 3.05e-07 ***
## factor(county)40  2.31580    0.37866   6.116 1.48e-09 ***
## factor(county)41  1.96715    0.26759   7.351 4.69e-13 ***
## factor(county)42  1.36098    0.75642   1.799 0.072343 .  
## factor(county)43  1.60224    0.25543   6.273 5.69e-10 ***
## factor(county)44  1.04099    0.28609   3.639 0.000291 ***
## factor(county)45  1.29541    0.21101   6.139 1.28e-09 ***
## factor(county)46  1.21461    0.33828   3.591 0.000349 ***
## factor(county)47  0.88393    0.53613   1.649 0.099583 .  
## factor(county)48  1.14812    0.25227   4.551 6.13e-06 ***
## factor(county)49  1.70211    0.21010   8.102 1.93e-15 ***
## factor(county)50  2.49321    0.75642   3.296 0.001022 ** 
## factor(county)51  2.16504    0.37821   5.724 1.45e-08 ***
## factor(county)52  1.92769    0.43672   4.414 1.15e-05 ***
## factor(county)53  1.25080    0.43741   2.860 0.004348 ** 
## factor(county)54  1.30676    0.15802   8.270 5.28e-16 ***
## factor(county)55  1.61799    0.26885   6.018 2.64e-09 ***
## factor(county)56  1.10110    0.43946   2.506 0.012415 *  
## factor(county)57  0.76218    0.30905   2.466 0.013855 *  
## factor(county)58  1.86092    0.37866   4.915 1.07e-06 ***
## factor(county)59  1.72178    0.37999   4.531 6.73e-06 ***
## factor(county)60  1.27939    0.53487   2.392 0.016979 *  
## factor(county)61  1.15873    0.13389   8.654  < 2e-16 ***
## factor(county)62  1.98301    0.33860   5.856 6.80e-09 ***
## factor(county)63  1.67070    0.43741   3.820 0.000144 ***
## factor(county)64  1.84784    0.22817   8.099 1.97e-15 ***
## factor(county)65  1.29912    0.53487   2.429 0.015357 *  
## factor(county)66  1.66574    0.20648   8.067 2.50e-15 ***
## factor(county)67  1.80312    0.21101   8.545  < 2e-16 ***
## factor(county)68  1.09002    0.26743   4.076 5.02e-05 ***
## factor(county)69  1.24245    0.37821   3.285 0.001062 ** 
## factor(county)70  0.86763    0.07096  12.227  < 2e-16 ***
## factor(county)71  1.49184    0.15174   9.832  < 2e-16 ***
## factor(county)72  1.57990    0.23920   6.605 7.08e-11 ***
## factor(county)73  1.79176    0.53487   3.350 0.000845 ***
## factor(county)74  0.98704    0.37821   2.610 0.009223 ** 
## factor(county)75  1.72372    0.43741   3.941 8.80e-05 ***
## factor(county)76  2.00844    0.37866   5.304 1.45e-07 ***
## factor(county)77  1.82168    0.28609   6.367 3.17e-10 ***
## factor(county)78  1.28569    0.33956   3.786 0.000164 ***
## factor(county)79  0.61488    0.37866   1.624 0.104785    
## factor(county)80  1.32952    0.11181  11.890  < 2e-16 ***
## factor(county)81  2.70953    0.43946   6.166 1.09e-09 ***
## factor(county)82  2.23001    0.75642   2.948 0.003286 ** 
## factor(county)83  1.62292    0.21048   7.711 3.57e-14 ***
## factor(county)84  1.64535    0.20987   7.840 1.38e-14 ***
## factor(county)85  1.18652    0.53487   2.218 0.026801 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7564 on 833 degrees of freedom
## Multiple R-squared:  0.7671, Adjusted R-squared:  0.7431 
## F-statistic: 31.91 on 86 and 833 DF,  p-value: < 2.2e-16
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
#basic MLM with just random intercept for county
M1<-lmer(y~x+(1|county),REML=FALSE)
summary(M1)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: y ~ x + (1 | county)
## 
##      AIC      BIC   logLik deviance df.resid 
##   2171.7   2190.9  -1081.8   2163.7      915 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.4071 -0.6164  0.0056  0.6398  3.4288 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  county   (Intercept) 0.1053   0.3245  
##  Residual             0.5703   0.7552  
## Number of obs: 919, groups:  county, 85
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  1.46116    0.05124  28.516
## x           -0.69264    0.07036  -9.844
## 
## Correlation of Fixed Effects:
##   (Intr)
## x -0.290

Here we pull in county-level data on uranium concentrations in the soil.

srrs2.fips <- srrs2$stfips*1000 + srrs2$cntyfips
cty <- read.table ("cty.dat", header=T, sep=",")
usa.fips <- 1000*cty[,"stfips"] + cty[,"ctfips"]
usa.rows <- match (unique(srrs2.fips[mn]), usa.fips)
uranium <- cty[usa.rows,"Uppm"]
u <- log (uranium)
u.full<-u[county]
# Extended model adding uranium but still only letting county effect be random
M2<-lmer(y~x+u.full+(1|county),REML=FALSE)
summary(M2)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: y ~ x + u.full + (1 | county)
## 
##      AIC      BIC   logLik deviance df.resid 
##   2132.8   2156.9  -1061.4   2122.8      914 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.9976 -0.6163  0.0307  0.6561  3.3794 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  county   (Intercept) 0.02127  0.1458  
##  Residual             0.57499  0.7583  
## Number of obs: 919, groups:  county, 85
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  1.46427    0.03714  39.421
## x           -0.66644    0.06865  -9.708
## u.full       0.72320    0.08965   8.067
## 
## Correlation of Fixed Effects:
##        (Intr) x     
## x      -0.361       
## u.full  0.154 -0.011

You can add the fixed effects and random effects intercept estimates to get the county-specific estimates.

#county-specific intercepts (already summed)
coef(M2)
## $county
##    (Intercept)          x    u.full
## 1     1.446360 -0.6664446 0.7232005
## 2     1.477562 -0.6664446 0.7232005
## 3     1.475294 -0.6664446 0.7232005
## 4     1.564351 -0.6664446 0.7232005
## 5     1.471756 -0.6664446 0.7232005
## 6     1.441176 -0.6664446 0.7232005
## 7     1.581533 -0.6664446 0.7232005
## 8     1.502609 -0.6664446 0.7232005
## 9     1.403162 -0.6664446 0.7232005
## 10    1.464858 -0.6664446 0.7232005
## 11    1.523062 -0.6664446 0.7232005
## 12    1.473036 -0.6664446 0.7232005
## 13    1.483560 -0.6664446 0.7232005
## 14    1.552980 -0.6664446 0.7232005
## 15    1.450082 -0.6664446 0.7232005
## 16    1.434359 -0.6664446 0.7232005
## 17    1.402969 -0.6664446 0.7232005
## 18    1.495567 -0.6664446 0.7232005
## 19    1.385946 -0.6664446 0.7232005
## 20    1.478770 -0.6664446 0.7232005
## 21    1.502003 -0.6664446 0.7232005
## 22    1.273595 -0.6664446 0.7232005
## 23    1.437307 -0.6664446 0.7232005
## 24    1.579944 -0.6664446 0.7232005
## 25    1.579079 -0.6664446 0.7232005
## 26    1.432816 -0.6664446 0.7232005
## 27    1.450991 -0.6664446 0.7232005
## 28    1.469662 -0.6664446 0.7232005
## 29    1.477798 -0.6664446 0.7232005
## 30    1.447268 -0.6664446 0.7232005
## 31    1.516209 -0.6664446 0.7232005
## 32    1.439860 -0.6664446 0.7232005
## 33    1.531057 -0.6664446 0.7232005
## 34    1.473829 -0.6664446 0.7232005
## 35    1.456401 -0.6664446 0.7232005
## 36    1.549861 -0.6664446 0.7232005
## 37    1.322404 -0.6664446 0.7232005
## 38    1.576315 -0.6664446 0.7232005
## 39    1.484922 -0.6664446 0.7232005
## 40    1.530801 -0.6664446 0.7232005
## 41    1.512364 -0.6664446 0.7232005
## 42    1.456722 -0.6664446 0.7232005
## 43    1.488732 -0.6664446 0.7232005
## 44    1.350955 -0.6664446 0.7232005
## 45    1.371060 -0.6664446 0.7232005
## 46    1.422598 -0.6664446 0.7232005
## 47    1.432893 -0.6664446 0.7232005
## 48    1.400647 -0.6664446 0.7232005
## 49    1.477518 -0.6664446 0.7232005
## 50    1.490677 -0.6664446 0.7232005
## 51    1.531461 -0.6664446 0.7232005
## 52    1.481265 -0.6664446 0.7232005
## 53    1.421987 -0.6664446 0.7232005
## 54    1.307791 -0.6664446 0.7232005
## 55    1.528542 -0.6664446 0.7232005
## 56    1.429738 -0.6664446 0.7232005
## 57    1.356566 -0.6664446 0.7232005
## 58    1.469035 -0.6664446 0.7232005
## 59    1.469165 -0.6664446 0.7232005
## 60    1.437526 -0.6664446 0.7232005
## 61    1.459781 -0.6664446 0.7232005
## 62    1.502191 -0.6664446 0.7232005
## 63    1.455592 -0.6664446 0.7232005
## 64    1.533374 -0.6664446 0.7232005
## 65    1.426588 -0.6664446 0.7232005
## 66    1.574772 -0.6664446 0.7232005
## 67    1.554066 -0.6664446 0.7232005
## 68    1.491669 -0.6664446 0.7232005
## 69    1.413569 -0.6664446 0.7232005
## 70    1.252753 -0.6664446 0.7232005
## 71    1.432915 -0.6664446 0.7232005
## 72    1.442803 -0.6664446 0.7232005
## 73    1.463372 -0.6664446 0.7232005
## 74    1.373305 -0.6664446 0.7232005
## 75    1.491761 -0.6664446 0.7232005
## 76    1.486276 -0.6664446 0.7232005
## 77    1.513860 -0.6664446 0.7232005
## 78    1.508870 -0.6664446 0.7232005
## 79    1.333256 -0.6664446 0.7232005
## 80    1.442874 -0.6664446 0.7232005
## 81    1.571802 -0.6664446 0.7232005
## 82    1.485489 -0.6664446 0.7232005
## 83    1.402955 -0.6664446 0.7232005
## 84    1.542854 -0.6664446 0.7232005
## 85    1.427437 -0.6664446 0.7232005
## 
## attr(,"class")
## [1] "coef.mer"
#fixed effects
fixef(M2)
## (Intercept)           x      u.full 
##   1.4642651  -0.6664446   0.7232005
#random effects
ranef(M2)
## $county
##      (Intercept)
## 1  -0.0179049553
## 2   0.0132967914
## 3   0.0110287558
## 4   0.1000862363
## 5   0.0074905000
## 6  -0.0230891610
## 7   0.1172682332
## 8   0.0383440827
## 9  -0.0611033042
## 10  0.0005928621
## 11  0.0587970219
## 12  0.0087706144
## 13  0.0192948986
## 14  0.0887146888
## 15 -0.0141831962
## 16 -0.0299061999
## 17 -0.0612961327
## 18  0.0313021006
## 19 -0.0783189236
## 20  0.0145052057
## 21  0.0377374237
## 22 -0.1906697471
## 23 -0.0269580812
## 24  0.1156793235
## 25  0.1148136002
## 26 -0.0314492806
## 27 -0.0132743951
## 28  0.0053968655
## 29  0.0135324582
## 30 -0.0169968356
## 31  0.0519434864
## 32 -0.0244053538
## 33  0.0667917505
## 34  0.0095636906
## 35 -0.0078641968
## 36  0.0855960132
## 37 -0.1418611800
## 38  0.1120497108
## 39  0.0206570459
## 40  0.0665354713
## 41  0.0480987057
## 42 -0.0075429376
## 43  0.0244664122
## 44 -0.1133097791
## 45 -0.0932052603
## 46 -0.0416670319
## 47 -0.0313718174
## 48 -0.0636185948
## 49  0.0132526872
## 50  0.0264114516
## 51  0.0671959196
## 52  0.0169994943
## 53 -0.0422783415
## 54 -0.1564744846
## 55  0.0642764988
## 56 -0.0345269336
## 57 -0.1076987708
## 58  0.0047696890
## 59  0.0048996570
## 60 -0.0267387480
## 61 -0.0044843852
## 62  0.0379256899
## 63 -0.0086726566
## 64  0.0691085347
## 65 -0.0376774205
## 66  0.1105065369
## 67  0.0898010353
## 68  0.0274040943
## 69 -0.0506964759
## 70 -0.2115118076
## 71 -0.0313500327
## 72 -0.0214618586
## 73 -0.0008935427
## 74 -0.0909600970
## 75  0.0274960635
## 76  0.0220112930
## 77  0.0495946579
## 78  0.0446046828
## 79 -0.1310090098
## 80 -0.0213916011
## 81  0.1075369683
## 82  0.0212238364
## 83 -0.0613104471
## 84  0.0785885116
## 85 -0.0368282736
## 
## with conditional variances for "county"

We can also allow variation across county in the association between floor of measurement and radon concentration.

#changing optimizer from default due to convergence issues
M3<-lmer(y~x+u.full+(1+x|county),REML=FALSE,control = lmerControl(optimizer ="Nelder_Mead"))
summary(M3)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: y ~ x + u.full + (1 + x | county)
## Control: lmerControl(optimizer = "Nelder_Mead")
## 
##      AIC      BIC   logLik deviance df.resid 
##   2131.6   2165.4  -1058.8   2117.6      912 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.1425 -0.6099  0.0321  0.6374  3.4975 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  county   (Intercept) 0.01398  0.1182       
##           x           0.11909  0.3451   0.26
##  Residual             0.56032  0.7485       
## Number of obs: 919, groups:  county, 85
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  1.46115    0.03480  41.982
## x           -0.64069    0.08620  -7.432
## u.full       0.77057    0.08679   8.879
## 
## Correlation of Fixed Effects:
##        (Intr) x     
## x      -0.257       
## u.full  0.195 -0.050